Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Commun Signal ; 22(1): 151, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408981

RESUMO

BACKGROUND: Coenzyme Q0 (CoQ0), a novel quinone derivative of Antrodia camphorata, has been utilized as a therapeutic agent (including antioxidant, anti-inflammatory, antiangiogenic, antiatherosclerotic, and anticancer agents); however, its depigmenting efficiency has yet to be studied. METHODS: We resolved the depigmenting efficiency of CoQ0 through autophagy induction in melanoma (B16F10) and melanin-feeding keratinocyte (HaCaT) cells and in vivo Zebrafish model. Then, MPLC/HPLC analysis, MTT assay, Western blotting, immunofluorescence staining, LC3 transfection, melanin formation, GFP-LC3 puncta, AVO formation, tyrosinase activity, and TEM were used. RESULTS: CoQ0-induced autophagy in B16F10 cells was shown by enhanced LC3-II accumulation, ATG7 expression, autophagosome GFP-LC3 puncta, and AVOs formation, and ATG4B downregulation, and Beclin-1/Bcl-2 dysregulation. In α-MSH-stimulated B16F10 cells, CoQ0 induced antimelanogenesis by suppressing CREB-MITF pathway, tyrosinase expression/activity, and melanin formation via autophagy. TEM data disclosed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in α-MSH-stimulated B16F10 cells. CoQ0-inhibited melanogenesis in α-MSH-stimulated B16F10 cells was reversed by pretreatment with the autophagy inhibitor 3-MA or silencing of LC3. Additionally, CoQ0-induced autophagy in HaCaT cells was revealed by enhanced LC3-II accumulation, autophagosome GFP-LC3 puncta and AVO formation, ATG4B downregulation, ATG5/ATG7 expression, and Beclin-1/Bcl-2 dysregulation. In melanin-feeding HaCaT cells, CoQ0 induced melanin degradation by suppressing melanosome gp100 and melanin formation via autophagy. TEM confirmed that CoQ0 increased melanosome-engulfing autophagosomes and autolysosomes in melanin-feeding HaCaT cells. Treatment with 3-MA reversed CoQ0-mediated melanin degradation in melanin-feeding HaCaT cells. In vivo study showed that CoQ0 suppressed endogenous body pigmentation by antimelanogenesis and melanin degradation through autophagy induction in a zebrafish model. CONCLUSIONS: Our results showed that CoQ0 exerted antimelanogenesis and melanin degradation by inducing autophagy. CoQ0 could be used in skin-whitening formulations as a topical cosmetic application.


Assuntos
Benzoquinonas , Melaninas , Polyporales , Ubiquinona , Animais , Humanos , Ubiquinona/farmacologia , Ubiquinona/metabolismo , Melaninas/metabolismo , Peixe-Zebra/metabolismo , Monofenol Mono-Oxigenase/metabolismo , alfa-MSH/metabolismo , Proteína Beclina-1/metabolismo , Melanócitos/metabolismo , Queratinócitos/metabolismo , Autofagia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Linhagem Celular Tumoral
2.
Toxicol Appl Pharmacol ; 465: 116453, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36914119

RESUMO

HNSCC (Head and Heck Squamous Cell Carcinoma) is a reasonably prevalent cancer with a high mortality rate. In this study, we tried to examine the anti-metastasis and apoptosis/autophagy actions of Coenzyme Q0 (CoQ0, 2,3-dimethoxy-5-methyl-1,4-benzoquinone), a derivative of Antrodia camphorata in HNCC TWIST1 overexpressing (FaDu-TWIST1) cells as well as in vivo tumor xenograft mice model. Using fluorescence based cellular assays, western blot and nude mice tumor xenografts, we determined that CoQ0 effectively reduced cell viability and displayed rapid morphological changes in FaDu-TWIST1 cells compared to FaDu cells. Non/sub-cytotoxic concentrations of CoQ0 treatment reduces the cell migration by downregulating TWIST1 and upregulating E-cadherin. Apoptosis produced by CoQ0 was mostly related with caspase-3 activation, PARP cleavage, and VDAC-1 expression. The FaDu-TWIST1 cells treated with CoQ0 exhibits autophagy-mediated LC3-II accumulation and acidic vesicular organelles (AVOs) formation. Pre-treatment with 3-MA and CoQ effectively prevented CoQ0-induced cell death and CoQ0-triggered autophagy in FaDu-TWIST cells as a death mechanism. CoQ0 induces ROS production in FaDu-TWIST1 cells and NAC pre-treatment significantly reduces anti-metastasis, apoptosis, and autophagy. Likewise, ROS-mediated AKT inhibition regulates CoQ0-induced apoptosis/autophagy in FaDu-TWIST1 cells. In vivo studies exhibit, CoQ0 effectively delays and reduces the tumor incidence and burden in FaDu-TWIST1-xenografted nude mice. Current findings display, CoQ0 exhibits a novel anti-cancer mechanism hence, it might be appropriate for anticancer therapy, and a new potent drug for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Ubiquinona , Humanos , Animais , Camundongos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Carcinoma de Células Escamosas de Cabeça e Pescoço , Morte Celular , Apoptose , Linhagem Celular Tumoral , Autofagia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Nucleares , Proteína 1 Relacionada a Twist
3.
Free Radic Biol Med ; 173: 151-169, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314818

RESUMO

3-O-ethyl ascorbic acid (EAA) is an ether-derivative of ascorbic acid, known to inhibit tyrosinase activity, and is widely used in skincare formulations. Nevertheless, the molecular mechanisms underlying the EAA's effects are poorly understood. Here, the anti-melanogenic activity of EAA was demonstrated through Nrf2-mediated α-MSH inhibition in UVA-irradiated keratinocytes (HaCaT) and autophagy induction and inhibition of α-MSH-stimulated melanogenesis in melanocytes (B16F10). EAA pretreatment increased the HaCaT cell viability but suppressed ROS-mediated p53/POMC/α-MSH pathways in UVA-irradiated cells. Further, the conditioned medium from EAA-pretreated and UVA-irradiated HaCaT cells suppressed the MITF-CREB-tyrosinase pathways leading to the inhibition of melanin synthesis in B16F10 cells. EAA treatment increased nuclear Nrf2 translocation via the p38, PKC, and ROS pathways leading to HO-1, γ-GCLC, and NQO-1 antioxidant expression in HaCaT cells. However, Nrf2 silencing reduced the EAA-mediated anti-melanogenic activity, evidenced by impaired antioxidant gene expression and uncontrolled ROS (H202) generation following UVA irradiation. In B16F10 cells, EAA-induced autophagy was shown by enhanced LC3-II levels, AVO formation, Beclin-1 upregulation, and activation of p62/SQSTM1. Further, EAA-induced anti-melanogenic activity was substantially decreased in autophagy inhibitor (3-MA) pretreated or LC3 knockdown B16F10 cells. Notably, transmission electron microscopy data showed increased melanosome-engulfing autophagosomes in EAA-treated B16F10 cells. Moreover, EAA also down-regulated MC1R, TRP-1/-2, tyrosinase expressions, and melanin synthesis by suppressing the cAMP-CREB-mediated MITF expression in B16F10 cells stimulated with α-MSH. In vivo studies on the zebrafish model further confirmed that EAA inhibited tyrosinase expression/activity and endogenous pigmentation. In conclusion, 3-O-ethyl ascorbic acid is an effective skin-whitening agent and could be used as a topical agent for cosmetic purposes.


Assuntos
Melaninas , Melanoma Experimental , Animais , Ácido Ascórbico , Autofagia , Linhagem Celular Tumoral , Queratinócitos , Melanócitos , Melanoma Experimental/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Peixe-Zebra , alfa-MSH
4.
Oxid Med Cell Longev ; 2020: 3476212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617135

RESUMO

Oxidative stress is an important contributing factor for inflammation. Piper methysticum, also known as Kava-kava, is a shrub whose root extract has been consumed as a drink by the pacific islanders for a long time. Flavokawain A (FKA) is a novel chalcone derived from the kava plant that is known to have medicinal properties. This study was aimed at demonstrating the antioxidant molecular mechanisms mediated by FKA on lipopolysaccharide- (LPS-) induced inflammation in BALB/c mouse-derived primary splenocytes. In vitro data show that the nontoxic concentrations of FKA (2-30 µM) significantly suppressed the proinflammatory cytokine (TNF-α, IL-1ß, and IL-6) release but induced the secretion of interleukin-10 (IL-10), an anti-inflammatory cytokine. It was also shown that FKA pretreatment significantly downregulated the LPS-induced ROS production and blocked the activation of the NFκB (p65) pathway leading to the significant suppression of iNOS, COX-2, TNF-α, and IL-1ß protein expressions. Notably, FKA favored the nuclear translocation of Nrf2 leading to the downstream expression of antioxidant proteins HO-1, NQO-1, and γ-GCLC via the Nrf2/ARE signaling pathway signifying the FKA's potent antioxidant mechanism in these cells. Supporting the in vitro data, the ex vivo data obtained from primary splenocytes derived from the FKA-preadministered BALB/c mice (orally) show that FKA significantly suppressed the proinflammatory cytokine (TNF-α, IL-1ß, and IL-6) secretion in control-, LPS-, or Concanavalin A- (Con A-) stimulated cells. A significant decrease in the ratios of pro- and anti-inflammatory cytokines (IL-6/IL-10; TNF-α/IL-10) showed that FKA possesses strong anti-inflammatory properties. Furthermore, BALB/c mice induced with experimental pancreatitis using cholecystokinin- (CCK-) 8 showed decreased serum lipase levels due to FKA pretreatment. We conclude that with its potent antioxidant and anti-inflammatory properties, chalcone flavokawain A could be a novel therapeutic agent in the treatment of inflammation-associated diseases.


Assuntos
Elementos de Resposta Antioxidante/genética , Antioxidantes/metabolismo , Chalcona/análogos & derivados , Inflamação/tratamento farmacológico , Inflamação/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Baço/metabolismo , Animais , Células Cultivadas , Chalcona/química , Chalcona/farmacologia , Chalcona/uso terapêutico , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Lipase/sangue , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Pancreatite/sangue , Pancreatite/patologia , Células RAW 264.7 , Transdução de Sinais
5.
Oxid Med Cell Longev ; 2019: 4098674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814875

RESUMO

Ultraviolet A (UVA) irradiation (320-400 nm range) triggers deleterious consequences in skin cell microenvironment leading to skin damage, photoaging (premature skin aging), and cancer. The accumulation of intracellular reactive oxygen species (ROS) plays a key role in this effect. With rapid progress in cosmetic health and quality of life, use of safe and highly effective phytochemicals has become a need of the hour. Zerumbone (ZER), a natural sesquiterpene, from Zingiber zerumbet rhizomes is well-known for its beneficial effects. We investigated the antiphotoaging and dermatoprotective efficacies of ZER (2-8 µM) against UVA irradiation (3 J/cm2) and elucidated the underlying molecular mechanisms in human skin fibroblast (HSF) cells. ZER treatment prior to low dose of UVA exposure increased cell viability. UVA-induced ROS generation was remarkably suppressed by ZER with parallel inhibition of MMP-1 activation and collagen III degradation. This was due to the inhibition of AP-1 (c-Fos and c-Jun) translocation. Furthermore, ZER alleviated UVA-induced SA-ß-galactosidase activity. Dose- or time-dependent increase of antioxidant genes, HO-1 and γ-GCLC by ZER, was associated with increased expression and nuclear accumulation of Nrf2 as well as decreased cytosolic Keap-1 expressions. Altered luciferase activity of ARE could explain the significance of Nrf2/ARE pathway underlying the dermatoprotective properties of ZER. Pharmacological inhibition of various signaling pathways suppressed nuclear Nrf2 activation in HSF cells confirming that Nrf2 translocation was mediated by ERK, JNK, PI3K/AKT, PKC, AMPK, casein kinase II, and ROS signaling pathways. Moreover, increased basal ROS levels and Nrf2 translocation seem crucial in ZER-mediated Nrf2/ARE signaling pathway. This was also evidenced from Nrf2 knocked-out studies in which ZER was not able to suppress the UVA-induced ROS generation in the absence of Nrf2. This study concluded that in the treatment of UVA-induced premature skin aging, ZER may consider as a desirable food supplement for skin protection and/or preparation of skin care products.


Assuntos
Fibroblastos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Sesquiterpenos/uso terapêutico , Pele/efeitos dos fármacos , Terapia Ultravioleta/métodos , Humanos , Espécies Reativas de Oxigênio , Sesquiterpenos/farmacologia , Transfecção , Raios Ultravioleta
6.
Free Radic Biol Med ; 143: 397-411, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442557

RESUMO

Kalantuboside B (KB), a natural bufadienolide derivative extracted from the succulent plant Kalanchoe tubiflora, is well-known for its cardiotonic, immunomodulatory, and anti-inflammatory properties. In this study, we tested in vitro and in vivo anti-cancer efficacy with low concentrations of KB (5-30 ng/mL; 8.7-52.2 nM) on A2058 melanoma cells; and for the molecular mechanisms that underlie them. KB significantly inhibited the cell viability and colony formation via arresting the cell cycle at G2/M phase. There was an association with a decrease in Cyclin A/B1, Cdc25C, and Cdc2 expressions. Further, this treatment indicated the induction of apoptosis, DNA fragmentation, cytochrome c release, and caspase-3, -8, -9, and -12 activation, and PARP cleavage, which shows that mitochondrial, death-receptor, and ER-stress signaling pathways are involved. KB-induced autophagy was apparent from enhanced LC3-II accumulation, GFP-LC3 puncta, and AVO formation. Surprisingly, KB-mediated cell death was potentiated by 3-MA and CQ to suggest the role of autophagy as a cytoprotective mechanism. Moreover, KB-treated A2058 cells enhanced intracellular ROS generation and antioxidant NAC prevented apoptosis and reversed cytoprotective autophagy. Interestingly, KB-induced apoptosis (PARP cleavage) and cytoprotective autophagy (LC3-II accumulation) were mediated by the up-regulation of the ERK signaling pathway. It was also shown that KB promoted cytoprotective autophagy by a calcium dependent-p53 downregulation pathway. In vivo data showed that KB suppressed tumor growth significantly in A2058-xenografted nude mice. A Western blot indicated cell-cycle inhibition (cyclin A reduction), apoptosis induction (PARP cleavage and Bcl-2 inhibition), and cytoprotective autophagy (LC3-II upregulation and p53 downregulation) in KB-treated A2058-xenografted mice. Our findings suggested that KB-induced ROS pathway plays a role in mediating the apoptosis and cytoprotective autophagy in human melanoma cells. Thus, KB is considered to be a putative anti-tumor agent.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia , Cardenolídeos/farmacologia , Proliferação de Células , Citoproteção , Melanoma/tratamento farmacológico , Animais , Apoptose , Ciclo Celular , Feminino , Humanos , Técnicas In Vitro , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...